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Physical proof: 
 
 Construct a new network NN with the same topology. Choose a tree. Put voltage 

sources in the tree branches, whose value equal the corresponding branch voltages of N’, 

and put current sources in the links whose values equal the corresponding link of N. 

Thus, conservation of power gives Tellegen’s theorem.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ECE 580 – Network Theory  Tellegen’s Theorem 
Sec. 2.2 Temes-Lapatra 

	  

	  

26	  

 

  



ECE 580 – Network Theory  Network Functions 
Sec. 5.1 Temes-Lapatra  

Chap 3 Balabanian-Bickart 

	  

27	  

Network Functions 
 
Driving-Point and Transfer Functions for Linear Networks 
 
Node equations: 

€ 

Yn (s)E(s) = Jn (s) can (in principle) be solved using Cramer’s Rule, so 
that the node voltages are given by 
 
 

€ 

E(s) =Yn
−1(s)Jn (s)  (a) 

 

€ 

YnE = Jn = A(J −YVe )  (b) 
 

Where the ij element of the inverse matrix is 

€ 

Δ ij

Δ
, Δ being the determinant of Yn and Δij 

its ij cofactor (signed subdeterminant). For a lumped linear circuit, Δ and the Δij are all 
real and rational is s.  
 
It follows from equation (a) that all response voltages and currents are weighted sums of 
the excitations, which enter 

€ 

Jn (s) .  
 

 
 

 
k = 1, 2, 3 

 

€ 

E(s) =

Δ11 Δ12 Δ13
Δ 21 Δ 22 Δ 23

Δ 31 Δ 32 Δ 33

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

J(s)
Δ

 

 
 

example: 

Lumped Linear Network 

 

 

Nodal current 

Excitation vector 

Superposition 
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Driving-Point Functions (Immittances) 
 
One-port circuit: 

 
 
Driving-point impedance:  
 

€ 

Z(s) =
V1(s)
I1(s)

  

Driving-point admittance: 
 

€ 

Y (s) =
I1(s)
V1(s)

=
1
Z(s)

  

 

From (a), 

€ 

Z(s) =
Δ11(s)
Δ(s)

; a real rational function of s.  

 
The positive real (PR) property:  
 Z(s) is a PR function of s if 

€ 

ℜe Z(s) ≥ 0  for 

€ 

ℜe s ≥ 0  
 
Brune’s Theorem: 
 Any real rational PR Z(s) can be realized using physical RLCM elements (R, L, C 
all ≥ 0), and vice versa, any such physical impedance must satisfy the real rational PR 
conditions. 
 
Proof of the PR property:  
 Consider a circuit containing only R, L, and C elements. For an R, 

€ 

V = R⋅ J , so 

€ 

V ⋅ J* = R⋅ J 2. Similarly, for an L, 

€ 

V ⋅ J* = sL⋅ J 2 , and for a C, 

€ 

V ⋅ J* =
1
sC
⋅ J 2 . Hence, 

for the complete network, substituting into Tellegen’s Theorem with J1 = 1A. 
 
 

€ 

Z(s) = Vk (s)
k
∑ Jk

*(s) = Fo(s) +
1
s
Vo(s) + sTo(s)  

 

Where, 
 

€ 

Fo(s) = Rk Jk
2, Vo(s)

k
∑ =

Jk
2

Ckk
∑ , and To(s) = Lk Jk

2

k
∑  
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For a physical circuit, all Rk, Lk, Ck are non-negative real numbers, and hence so are Fo, 
Vo, and To, for any s. 
 
Next let  
 

€ 

s =σ + jω   
 

€ 

1
σ + jω

=
σ − jω
σ2 +ω 2 ⇒

σ
σ2 +ω 2 ≥ 0   

 

Where 

€ 

σ ≥ 0. Then both 

€ 

ℜe(s)  and 

€ 

ℜe(1
s
) =

σ
σ2 +ω 2  are non-negative, and hence so is 

€ 

ℜeZ(s) .  
 
The above can be extended to transformers.  
 
The proof of the sufficiency of the real rational PR conditions is based on a synthesis, 
which always leads to physical element values. It uses resistors, capacitors and closely 
coupled transformers.  
 
Brune synthesis 
 

€ 

s2 + ... s+ 3
s5 + ... 2s+1

 
 

 
Closely coupled “physical transformer” 
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Node Analysis Summary 
 

€ 

A  Incidence matrix, all analysis in s domain 
 

Kirchhoff’s Laws: 

€ 

V = At E  

€ 

V :branch voltage vector
E : node voltage vector

 

€ 

AI = 0  

€ 

I :branch current vector
0 : zero vector

 

 

Branch Relations: 

€ 

I'= I − J  

€ 

I' :branch current vector
I : element current vector
J : souce current vector

 

€ 

V '=V −VE  

€ 

V ' :branch voltage vector
V : element voltage vector
VE : souce voltage vector

 

€ 

I =YV  

€ 

Y :branch admit tance matrix  
  

Combining relations: 

€ 

YN = AY At  

€ 

YN : node admit tance matrix  

€ 

JN = A[J −YV ] 

€ 

JN : node current excitation vector  

€ 

YN E = JN  

€ 

generaizednode node equations 
 


